
23rd Australian Conference on Optical Fibre Technology Melbourne, 5-8 July 1998

Proceeding were published by IREE, Milsons Point NSW

ISBN: 0 909394 45 8

The Australian Optical Society (AOS) has digitised the contents/index pages of this conference*.

The conference volume contains the individual papers, and is held by one or more libraries in Australia; please refer to the website:

http://optics.org.au/ACOFT

Authors	Paper title	Page
A Gambling	Light reflections in glass	1
J Lacey	Wavelength conversion for WDM telecommunications systems	9
G H Smith, C Lim & D Novak	Demonstration of a full-duplex fibre-radio access network incorporating WDM/SCM with a star-tree architecture	13
K Hinton	Long haul system issues with Bragg fibre grating based dispersion compensation	17
G H Smith, A Nirmalathas, D Novak & J Yates	Broadband millimetre-wave fibre-radio CDMA	21
C Su, P Kung & W H Loh	Experimental results of dispersion compensating chirped fiber Bragg grating for 10 Gb/s system	25
B Jaskorzynska	Active planar waveguides in glass - problems and advances	29
M Aslund, J Canning, D Moss & M Bazylenko	High temperature stable gratings in germanosilicate planar waveguides	33
R B Charters, B Luther- Davies & F Ladouceur	Laser direct writing of polymeric PLC's using a TEM ₀₁ beam	37
H P Chan S Y Cheng, P S Chung	Design of a wide-angle low-loss 1x3 integrated optical branching waveguide	41
T W Whitbread, H Hu & P L Chu	Development of an optical low coherence reflectometer	45
J M Dudley, L P Barry & J D Harvey	Characterisation of high-order soliton evolution in optical fibre using frequency-resolved optical gating	49
A Arraf & C M de Sterke	Bloch function approach for light propagation in quadratically nonlinear deep gratings	53
M D Thamson, J M Dudley, L P Barry & J D Harvey	Waveguide-enhanced frequency-resolved optical gating at 1.5 μ m using the Kerr nonlinearity in optical fibre	57
B Wu, M Gross, P L Chu & M Bazylenko	Er-doped silicate glass films with large nonlinearity	61
R Kashyap	On the dispersion of chirped fibre Bragg gratings	65
L Poladian	Iterative and non-iterative design algorithms for Bragg gratings	69

J Canning, D Y Stepanov &	Direct imaging of spatial modes within optical waveguide	73
H J J Verheijen	gratings	
G W Yoffe & J Bryce	Tunable reflectivity from complex fibre gratings	77
D Y Stepanov, J Canning &	100 kHz resolution of fibre Bragg grating transmission	81
Z Brodzeli	measurements	05
A C Lindsay	Photonics in electronic warfare	85
A M Kuver, M W Austin, Y	Development of a packaged wideband integrated optical	89
Cao, R Green, A Mitchell,	modulator	
S T Winnall & A C Lindsay		
H H Tan & C Jagadish	Use of ion implantation in wavelength tuning of quantum well	93
	lasers and a fabrication of quantum wire laser arrays	07
K Ghorbani, A Mitchell, R	An RF phase shifter incorporating variable optical directional	97
B Waterhouse & M W	coupler	
Austin		
R M Howard	Halving the amplifier contribution to the input equivalent noise	101
	of an opto-electronic receiver with a dual sensing structure	
P A Krug, M I Large & R G	Optical fibre technique for remote stabilisation of RF phase	105
Davison		
M J L Cahill	Capacity of coherence-multiplexed networks employing	109
	balanced receivers with finite common-mode rejection	
H Gan, A Lowery & R	Inexpensive "virtual-optical-isolator" for customer access	113
Lauder	network	
J Arkwright, G Yoffe, B	All-fibre tunable optical delay line based on a uniform Bragg	117
Smith & G Town	reflection grating	
Z H Wang & P L Chu	Analytic solutions of the radiation modes for multilayer planar	121
	dielectric waveguides	
B Smith, J Canning & G	Birefringence measurements of fibre Bragg gratings	125
Yoffe		
G E Town & C O'Malley,	Chaotic fibre lasers for secure optical communications	129
A E Ash, M W Austin & J L	Efficient coupling of a laser to a waveguide using a taper	133
Love	designed by conformal mapping	
J Katsifolis, L W Cahill & J	Fabrication of passive waveguide devices using focussed ion	137
L Love	beam implantation	
M L von Bibra, M Bromley	Fabrication and characterisation of tapered multimode optical	141
& A Roberts	fibre devices	
S Yuan, H H Tan, G Li C	High power 980-nm InGaAs lasers with zinc or carbon doping in	145
Jagadish, Y Chang & F	the P-cladding layer	
Karouta		
N Q Ngo & L N Binh	Synthesis of tunable optical waveguide filters with arbitrary IIR	149
	characteristics	
I R Mitchell & P M Farrell	Temperature dependence of Judd-Ofelt parameters for	153
	Pr:ZBLANP and Nd:ZBLANP glasses	
A Barty, S T Huntington, D	Two new techniques for the characterisation of optical fibres	157
Paganin, A Roberts, K A	and waveguides: a comparison	
Nugent & P Mulvaney		
R Perera, Hunter, L	Use of WDM and TDM as complementary technologies to	161
Thompson,	optimise the benefits	
L G Luo & P L Chu	Wavelength conversion in an erbium-doped fiber laser system	165
D Y Stepanov, J Canning, L	Large side-mode suppression in a distributed-feedback fibre	169
	laser	105
Poladian, R Wyatt, G	וסכו	
Maxwell, R Smith & R		
Kashyap		

Reduced optical pulse amplitude noise and timing jitter in a	173
regeneratively mode-locked fibre ring laser	
Large mode area fibres for high power lasers	177
A novel polarisation modulator based on Mach-Zehnder	181
interferometers	
Brillouin/erbium fibre laser current monitor	185
Fluorescence intensity-ratio-based optical fibre temperature	189
sensing using neodymium-doped materials	
Bending related effects in a new type of polarisation	193
maintaining optical fibre	
Thermal poling of aluminium co-doped germanosilicate fibres	197
Direct measurement of frozen-in field in thermally poled fibre	201
devices	
Spectral shifts in UV-exposed fused taper fibre couplers	205
Photosensitivity in dye-doped polymer optical fibre	209
	regeneratively mode-locked fibre ring laser Large mode area fibres for high power lasers A novel polarisation modulator based on Mach-Zehnder interferometers Brillouin/erbium fibre laser current monitor Fluorescence intensity-ratio-based optical fibre temperature sensing using neodymium-doped materials Bending related effects in a new type of polarisation maintaining optical fibre Thermal poling of aluminium co-doped germanosilicate fibres Direct measurement of frozen-in field in thermally poled fibre devices Spectral shifts in UV-exposed fused taper fibre couplers

*AOS provides this document as a service to the community, but accepts no responsibility for any errors it might contain.

